实数教案 篇1
学习目标:
1、使学生了解无理数和实数的意义能用夹值法求一个数的算术平方根的近似值;.
2、体验“无限不循环小数”的含义,感受存在着不同于有理数的一类新数
夹值法及估计一个(无理)数的大小的思想。
学习重点:无理数及实数的概念
学习难点;实数概念、分类.
学习过程:
一、学习准备
1、写出有理数两种分类图示
2、使用计算器计算,把下列有理数写成小数的形式,你有什么发现?
二、合作探究
1、阅读课本第11页的思考,想一想怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?动手试一试,并绘出示意图
方法1:方法2:
2、我们已经知道:正数x满足=a,则称x是a的算术平方根.当a恰是一个数的平方数时,我们已经能求出它的算术平方根了,例如,=4;但当a不是一个数的平方数时,它的算术平方根又该怎祥求呢?例如课本第11页的大正方形的边长是,表示2的'算术平方根,它到底是个多大的数?你能求出它的值吗?阅读课本第11、12页夹值法探究,尝试探究,完成填空:
因为()2=<3,()2=>3
所以<<
因为()2=<3,()2=>3
所以<<
因为()2=<3,()2=>3
所以<<
因为()2=<3,()2=>3
所以<<
像上面这样逐步逼近,我们可以得到:≈
3、用计算器得出,的结果,再把结果平方,你有什么发现?多试试几个。
4、什么是无理数?例举我们学过的一些无理数
5、无理数有几种分类方法,写出图示。
三、学习体会:
本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?
四、自我测试
1、判断:
①实数不是有理数就是无理数。()②无理数都是无限不循环小数。()
③无理数都是无限小数。()④带根号的数都是无理数。()
⑤无理数一定都带根号。()
2、实数,,,3.1416,,,0.2020020002……(每两个2之间多一个零)中,无理数的个数有()
A.2个B.3个C.4个D.5个
3、下列说法中正确的是()
A、A.无理数是开方开不尽的数B.无限小数不能化成分数
C.无限不循环小数是无理数D.一个负数的立方根是无理数
4、将0,3.14,,,π,,,,,,0.7070070007…分别填入相应的集合内.
有理数集合{ …};正分数集合{ …}
无理数集合{ …};负整数集合{ …}
实数集合{ …}.
拓展训练:
1、在实数范围内,下列各式一定不成立的有()
(1)=0;(2)+a=0;(3)+=0;(4)=0.
A.1个B.2个C.3个D.4个
2、阅读课本第18页“不是有理数”的证明。
3、根据右图拼图的启示:
(1)计算+=________;
(2)计算+=________;
(3)计算+=________.
数学小知识——祖冲之和π值的计算
祖冲之(429~500),中国南北朝时期著名的数学家和天文学家.他在数学上的主要贡献是:
1.推算出圆周率π在不足近似值3.1415926和过剩近似值3.1415927之间、精确到小数点后7位.
2.和祖暅一起解决了球体积的计算问题,得到球体积公式,并提出了“幂势既同、则积不容异”的原理.
祖冲之还找到了两个近似于的分数值,一个是,称为约率,另一个是,称为幂率,后者是祖冲之独创的,因此,后人称之为“祖率”,以纪念这位数学家.
实数教案 篇2
尊敬的各位领导、评委老师:
大家好!
今天我说课的题目是《实数》。实数是人教版数学教材第六章实数的第3节第1课时。刚讲完平方根、立方根,下一章将学习平面直角坐标系中的点和实数对一一对应的关系,所以本节课的设置起到了承前启后的作用。本节课在数的开方的基础上引进无理数的概念,使数从有理数范围扩展到实数范围。实数在中学教学中占有重要地位,它不仅是今后学习二次根式,一元二次方程以及锐角三角函数等知识的基础,也是今后学习高中数学中的函数,不等式等知识的基础。本节课的重点是对无理数和实数的概念的认识,实数与数轴上的点是一一对应的关系。本节课的难点是对无理数的认识。
依据《课程标准》并结合教材内容及学生的认知水平和思维特点。
确定本节课的教学目标如下:
1、了解无理数和实数的概念,知道实数与数轴上的点是一一对应的关系。
2、通过无理数引入,经历数从有理数扩展到实数的过程,培养从特殊到一般,由具体到抽象的逻辑思维能力,并渗透类比思想,数形结合思想,分类讨论思想。
3、敢于发表自己的想法。养成认真勤奋,独立思考,合作交流等学习习惯,形成严谨求实的科学态度。
常言道:“教学有法,教无定法。”为了讲清本节课的重难点,我主要采取以下教学方法:
1、愉悦教学法:学生带着快乐走进课堂,不仅便于教师教学,更有助于重难点的突破。
2、探究式教学法:学生通过独立思考,动手操作,小组交流等达到自主探究的目的。
3、类比教学法:类比有理数学习实数,使学生课上有亲切感,乐于接受新知。
4、直观教学法:通过自制简易教具,多媒体等直观演示,以助重点的掌握。
为了培养高素质人才,我注重学法的指导。
本节课我主要采取:
1、自主学习:学生通过独立思考,动手操作,小组交流达到自主学习的目的。
2、学练结合:熟能生巧,新知学后,练习是必不可少的,学练结合,使学生达到运用新知解题能力。
下面我来说一说本节课的教学程序:
1、创设意境,设疑导入。俗话说:良好的开端就是成功的一半。为了让学生带着浓厚的兴趣走进课堂。上课伊始,大屏幕上出现一队英姿飒爽的军人。同时播放《一二三四歌》,大约两句后,音乐戛然而止。一位头戴“无限不循环小数”军帽的军人向前一步:“报告排长,我们去哪个军营休息?”排长说:原地待命,马上解决!排长是如何解决的呢?让我们去探个究竟。在学生疑问和好奇中,引出课题第六章第三节第一课时:实数。
2、对无理数的认识不仅是本节课的教学难点,也是本节课的教学重点之一。为了突出教学重点,突破教学难点,我编写了这样一个故事:一天,有理数家进来了一帮人。一看,不是咱有理数家的人,进屋后,这帮人便表明来意,说要加入数的家族。有新成员加入有理数家当然喜不胜收。于是引出无理数,那么常见的无理数有哪些呢?学生很容易从来的客人中分出三类:
(1)含π的数;
(2)开()不尽方根的数;
(3)有规律的无限不循环小数,并类比有理数,让学生知道无理数分正无理数和负无理数,紧接着跟踪一道找无理数的例题。然后引导学生回归导言,排长把无限不循环小数分配到哪个军营?学生们会异口同声地说:“无理数军营”。
3、了解实数的概念是本节课的第二个重点,为了让学生更好地掌握这个重点,我设计了这样一个情境:负数来了,数的家族壮大了,起名有理数。今天无理数来了,数的家族再次壮大了,起什么名好呢?学生们纷纷发言,当学生看到黑板上的课题自然回答出实数,接下来类比有理数,让学生独立思考,小组交流,得到实数的两种分类。这样教学,学生不仅学会了知识,而且知道了类比思想。并跟踪两道例题,以助重点的`突破。
4、本节课的第三个重点是实数与数轴上的点一一对应。为了更直观的教学,我利用fLAsH课件做了圆在数轴上滚动的课件,学生清楚地看到了无理数π在数轴上的对应点,接着提问:数轴上到原点距离等于π的数有几个?学生们找到正负π;在数轴上表示根号2的教学,我设计了一道探究题:有两个边长为1分米的正方形,你能用它们拼成一个面积为2的大正方形吗?学生们通过独立思考,动手操用,小组交流,黑板演示,最后成功了。由算术平方根定义知道这个面积为2的大正方形的边长为根号2,引导学生发现大正方形的边长其实就是小正方形的对角线,也就是说,边长为1的正方形的对解线是根号2,由教师引导,让学生在数轴上画边长为1的正方形,再利用圆规把它的对角线转移到数轴上,于是在数轴上找到了表示根号2的点,接着提问:数轴上到原点距离等于根号2的数有几个?学生找到正负根号2。这样教学,学生们不仅知道实数和数轴上的点一一对应,而且还知道了数形结合思想,分类讨论思想,并配有两道例题。
5、回顾本节课,让学生谈谈收获,接下来我说一下教学媒体资源选择。本节课我选择了丰富课堂教学内容的媒体资源。如《一二三四》军旅歌。
我知道,作为一名数学教师,学生得高分不是目的,更重要的是学生能力的培养,本节课学生们知道了类比思想,数形结合思想,分类讨论思想,我注重培养学生独立思考能力,动手操作能力,合作交流能力,语言组织表达能力,培养学生逻辑思维能力,让学生不仅学会数学,更重要的是让学生喜欢上数学课,爱上数学课,喜欢这探究式教学的乐趣,喜欢这师生、生生情感交流、传递、延续……
“一腔热血尽洒三尺讲台,两袖清风书写踏实人生”我将以此为座右铭,用科学的态度精心设计每一节课,使我的课堂教学再上一层楼。谢谢!
实数教案 篇3
【教学目的】
精选学生在解一元二次方程有关问题时出现的典型错例加以剖析,帮助学生找出产生错误的原因和纠正错误的方法,使学生在解题时少犯错误,从而培养学生思维的批判性和深刻性。
【课前练习】
1、关于x的方程ax2+bx+c=0,当a_____时,方程为一元一次方程;当 a_____时,方程为一元二次方程。
2、一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=_______,当△_______时,方程有两个相等的实数根,当△_______时,方程有两个不相等的实数根,当△________时,方程没有实数根。
【典型例题】
例1 下列方程中两实数根之和为2的方程是()
(A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0
错答: B
正解: C
错因剖析:由根与系数的关系得x1+x2=2,极易误选B,又考虑到方程有实数根,故由△可知,方程B无实数根,方程C合适。
例2 若关于x的方程x2+2(k+2)x+k2=0 两个实数根之和大于-4,则k的取值范围是( )
(A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0
错解 :B
正解:D
错因剖析:漏掉了方程有实数根的前提是△≥0
例3(20xx广西中考题) 已知关于x的一元二次方程(1-2k)x2-2 x-1=0有两个不相等的实根,求k的取值范围。
错解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范围是 -1≤k<2
错因剖析:漏掉了二次项系数1-2k≠0这个前提。事实上,当1-2k=0即k= 时,原方程变为一次方程,不可能有两个实根。
正解: -1≤k<2且k≠
例4 (20xx山东太原中考题) 已知x1,x2是关于x的一元二次方程x2+(2m+1)x+m2+1=0的两个实数根,当x12+x22=15时,求m的值。
错解:由根与系数的关系得
x1+x2= -(2m+1), x1x2=m2+1,
∵x12+x22=(x1+x2)2-2 x1x2
=[-(2m+1)]2-2(m2+1)
=2 m2+4 m-1
又∵ x12+x22=15
∴ 2 m2+4 m-1=15
∴ m1 = -4 m2 = 2
错因剖析:漏掉了一元二次方程有两个实根的前提条件是判别式△≥0。因为当m = -4时,方程为x2-7x+17=0,此时△=(-7)2-4×17×1= -19<0,方程无实数根,不符合题意。
正解:m = 2
例5 若关于 x的方程(m2-1)x2-2 (m+2)x+1=0有实数根,求m的取值范围。
错解:△=[-2(m+2)]2-4(m2-1) =16 m+20
∵ △≥0
∴ 16 m+20≥0,
∴ m≥ -5/4
又 ∵ m2-1≠0,
∴ m≠±1
∴ m的取值范围是m≠±1且m≥ -
错因剖析:此题只说(m2-1)x2-2 (m+2)x+1=0是关于未知数x的方程,而未限定方程的次数,所以在解题时就必须考虑m2-1=0和m2-1≠0两种情况。当m2-1=0时,即m=±1时,方程变为一元一次方程,仍有实数根。
正解:m的取值范围是m≥-
例6 已知二次方程x2+3 x+a=0有整数根,a是非负数,求方程的整数根。
错解:∵方程有整数根,
∴△=9-4a>0,则a<2.25
又∵a是非负数,∴a=1或a=2
令a=1,则x= -3± ,舍去;令a=2,则x1= -1、 x2= -2
∴方程的整数根是x1= -1, x2= -2
错因剖析:概念模糊。非负整数应包括零和正整数。上面答案仅是一部分,当a=0时,还可以求出方程的另两个整数根,x3=0, x4= -3
正解:方程的整数根是x1= -1, x2= -2 , x3=0, x4= -3
【练习】
练习1、(01济南中考题)已知关于x的方程k2x2+(2k-1)x+1=0有两个不相等的实数根x1、x2。
(1)求k的取值范围;
(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由。
解:(1)根据题意,得△=(2k-1)2-4 k2>0 解得k<
∴当k< 时,方程有两个不相等的实数根。
(2)存在。
如果方程的`两实数根x1、x2互为相反数,则x1+ x2=- =0,得k= 。经检验k= 是方程- 的解。
∴当k= 时,方程的两实数根x1、x2互为相反数。
读了上面的解题过程,请判断是否有错误?如果有,请指出错误之处,并直接写出正确答案。
解:上面解法错在如下两个方面:
(1)漏掉k≠0,正确答案为:当k< 时且k≠0时,方程有两个不相等的实数根。
(2)k= 。不满足△>0,正确答案为:不存在实数k,使方程的两实数根互为相反数
练习2(02广州市)当a取什么值时,关于未知数x的方程ax2+4x-1=0只有正实数根 ?
解:(1)当a=0时,方程为4x-1=0,∴x=
(2)当a≠0时,∵△=16+4a≥0 ∴a≥ -4
∴当a≥ -4且a≠0时,方程有实数根。
又因为方程只有正实数根,设为x1,x2,则:
x1+x2=- >0 ;
x1. x2=- >0 解得 :a<0
综上所述,当a=0、a≥ -4、a<0时,即当-4≤a≤0时,原方程只有正实数根。
【小结】
以上数例,说明我们在求解有关二次方程的问题时,往往急于寻求结论而忽视了实数根的存在与“△”之间的关系。
1、运用根的判别式时,若二次项系数为字母,要注意字母不为零的条件。
2、运用根与系数关系时,△≥0是前提条件。
3、条件多面时(如例5、例6)考虑要周全。
【布置作业】
1、当m为何值时,关于x的方程x2+2(m-1)x+ m2-9=0有两个正根?
2、已知,关于x的方程mx2-2(m+2)x+ m+5=0(m≠0)没有实数根。
求证:关于x的方程
(m-5)x2-2(m+2)x + m=0一定有一个或两个实数根。
考题汇编
1、(20xx年广东省中考题)设x1、 x2是方程x2-5x+3=0的两个根,不解方程,利用根与系数的关系,求(x1-x2)2的值。
2、(20xx年广东省中考题)已知关于x的方程x2-2x+m-1=0
(1)若方程的一个根为1,求m的值。
(2)m=5时,原方程是否有实数根,如果有,求出它的实数根;如果没有,请说明理由。
3、(20xx年广东省中考题)已知关于x的方程x2+2(m-2)x+ m2=0有两个实数根,且两根的平方和比两根的积大33,求m的值。
4、(20xx年广东省中考题)已知x1、x2为方程x2+px+q=0的两个根,且x1+x2=6,x12+x22=20,求p和q的值。
实数教案 篇4
幂的乘方:公式的探究方式和前节类似,因此在教学中可以利用该优势展开教学,在探究过程中可以进一步发挥学生的主动性,尽可能地让学生在已有知识的基础上,通过自主探究,获得幂的乘方运算的感性认识,进而理解运算法则。
积的乘方:
1.掌握积的乘方的运算法则;(重点)
2.掌握积的乘方的推导过程,并能灵活运用.(难点)
一、情境导入
1.教师提问:同底数幂的乘法公式和幂的乘方公式是什么?
学生积极举手回答:
同底数幂的乘法公式:同底数幂相乘,底数不变,指数相加.
幂的乘方公式:幂的乘方,底数不变,指数相乘.
2.肯定学生的发言,引入新课:今天学习幂的运算的第三种形式——积的乘方.
知识点
1.地球 的半径长约为6×103 km,用S,r分别表示赤道所围成的圆的面积和地球半径,则S=πr2,计算赤 道所围成的圆的面积约为1.13×108__km2.(π取3.14,结果精确到0.01)
2.用公式表示图中阴影部分面积S,并求出当a=1.2×103 cm,r=4×102 cm时,S的值.(π取3.14)
《1.2幂的`乘法与积的乘方》同步测试
一、选择题
1.计算:(m3n)2的结果是( )
A.m6n B.m6n2 C.m5n2 D.m3n2
2.计算(x2)3的结果是( )
A.x B.3x2 C.x5 D.x6
3.下列各式计算正确的是( )
A.(a2)2=a4 B.a+a=a2 C.3a2+a2=2a2 D.a4?a2=a8
4.下列计算正确的是( )
A.a3?a4=a12 B.(a3)4=a7 C.(a2b)3=a6b3 D.a3÷a4=a(a≠0)
《1.2幂的乘方与积的乘方》课时练习含答案解析
一.填空题
(a3)2?a4等于 ;
答案:a10
解析:解答:(a3)2?a4=a6?a4=a10.
分析:先根据幂的乘方算出(a3)2=a6,再同底数幂的乘法法则可完成此题.
实数教案 篇5
教学设计
1、通过对生活中各种事件的概率的判断,归纳出必然事件、不可能事件和随机事件的特点,并根据这些特点对有关事件做出准确的判断;(重点)
2、知道事件发生的可能性是有大小的(难点)
一、情境导入
在一些成语中也蕴含着事件类型,例如瓮中捉鳖、拔苗助长、守株待兔和水中捞月所描述的事件分别属于什么类型的事件呢?
二、合作探究
探究点一:必然事件、不可能事件和随机事件
【类型一】必然事件
一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是()
A、摸出的4个球中至少有一个是白球
B、摸出的4个球中至少有一个是黑球
C、摸出的4个球中至少有两个是黑球
D、摸出的4个球中至少有两个是白球
解析:∵袋子中只有3个白球,而有5个黑球,∴摸出的4个球可能都是黑球,因此选项A是不确定事件;摸出的4个球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪种情况,至少有一个球是黑球,∴选项B是必然事件;摸出的4个球可能为1黑3白,∴选项C是不确定事件;摸出的4个球可能都是黑球或1白3黑,∴选项D是不确定事件、故选B、
方法总结:事件类型的判断首先要判断该事件发生与否是不是确定的若是确定的,再判断其是必然发生的(必然事件),还是必然不发生的(不可能事件)、若是不确定的,则该事件是不确定事件、
变式训练:见《学练优》本课时练习“课堂达标训练”第1题
【类型二】不可能事件
下列事件中不可能发生的是()
A、打开电视机,中央一台正在播放新闻
B、我们班的同学将来会有人当选为劳动模范
C、在空气中,光的传播速度比声音的传播速度快
D、太阳从西边升起
解析:“太阳从西边升起”这个事件一定不会发生,所以它是一个不可能事件、故选D、
变式训练:见《学练优》本课时练习“课堂达标训练”第2题
【类型三】随机事件
下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④测量三角形的内角和,结果是180°、其中是随机事件的是________(填序号)、
解析:书的页码可能是奇数,也有可能是偶数,所以事件①是随机事件;100℃的气温人不能生存,所以不可能测得这样的气温,所以事件②是不可能事件,属于确定事件;骰子六个面的数字分别是1、2、3、4、5、6,因此事件③是随机事件;三角形内角和总是180°,所以事件④是必然事件,属于确定事件、故答案是①③、
变式训练:见《学练优》本课时练习“课堂达标训练”第6题
探究点二:随机事件发生的可能性
掷一枚均匀的骰子,前5次朝上的点数恰好是1~5,则第6次朝上的点数()
A、一定是6
B、是6的可能性大于是1~5中的任意一个数的可能性
C、一定不是6
D、是6的可能性等于是1~5中的任意一个数的可能性
解析:要分清可能与可能性的区别:可能是情况的分类数目,是正整数;可能性指事件发生的概率,是一个0到1之间的分数、要求可能性的大小,只需求出各自所占的比例大小即可、第6次朝上的点数可能是6,故A、D均错;因为一枚均匀的骰子上有1~6六个数,所以出现的点数为1~6的可能性相同,故B错,D对、故选D、
方法总结:不确定事件的可能性有大有小、骰子在掷的过程中,每个点数出现的可能性是一样的
变式训练:见《学练优》本课时练习“课堂达标训练”第11题
三、板书设计
1、必然事件、不可能事件和随机事件
必然事件:一定会发生的事件;
不可能事件:一定不会发生的'事件;
必然事件和不可能事件统称为确定事件;
随机事件:无法事先确定一次试验中会不会发生的事件、
2、随机事件发生的可能性
教学过程中,结合生活实际,对身边事件发生的情况作出判断,通过实测理解掌握定义,鼓励学生展开想象,积极参与到课堂学习中去。
《6、1感受可能性》课时练习
一、选择题(共15个小题)
1、下列说法正确的是()
A、随机事件发生的可能性是50%
B、确定事件发生的可能性是1
C、为了了解岳阳5万名学生中考数学成绩,可以从中抽取10名学生作为样本
D、确定事件发生的可能性是0或1
答案:D
解析:解答:对于A,随机事件发生的可能性大于0,而小于100%,是在一个范围之内,并不是一个确定的数值;对于B,确定事件,包括发生的可能性是0或1;对于C,应该是从中抽取10名学生的中考数学成绩作为一个样本;D是在B的基础上完整叙述,正确、故选D、
分析:本题考察对多个知识点的理解,关键是认真对照各知识点内容、
6、1感受可能性同步练习
一、选择——基础知识运用
1、不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()
A、摸出的是3个白球
B、摸出的是3个黑球
C、摸出的是2个白球、1个黑球
D、摸出的是2个黑球、1个白球
2、在1,3,5,7,9中任取出两个数,组成一个奇数的两位数,这一事件是()
A、不确定事件B、不可能事件
C、可能性大的事件D、必然事件
3、下列事件是必然事件的是()
A、打开电视机正在播放广告
B、投掷一枚质地均匀的硬币100次,正面向上的次数为50次
C、任意一个一元二次方程都有实数根
D、在平面上任意画一个三角形,其内角和是180°
实数教案 篇6
教学目标
1、了解无理数和实数的概念;会对实数按照一定的标准进行分类,培养分类能力;
2、了解分类的标准与分类结果的相关性,进一步了解体会“集合”的含义;
3、了解实数范围内相反数和绝对值的意。
教学难点
理解实数的概念。
知识重点
正确理解实数的概念。
教学过程
设计理念
试一试
学生以前学过有理数,可以请学生简单地说一说有理数的基本概念、分类.
试一试
1、使用计算器计算,把下列有理数写成小数的形式,你有什么发现?
动手试一试,说说你的发现并与同学交流.
(结论:上面的有理数都可以写成有限小数或无限循环小数的形式)
可以在此基础上启发学生得到结论:任何一个有理数都可以写成有限小数或无限循环小数的形式.
2、追问:任何一个有限小数或无限循环小数都能化成分数吗?
(课件展示)
阅读下列材料:
设x=0.=0.333…①
则10x=3.333…②
则②-①得9x-3,即x=
即0.=0.333…=
根据上面提供的方法,你能把0,0化成分数吗?且想一想是不是任何无限循环小数都可以化成分数?
在此基础上与学生一起得到结论:任何一个有限小数或无限循环小数都能化成分数,所以任何一个有限小数或无限循环小数都是有理数。
学生自己回忆有理数的分类,为引入实数的分类作好铺垫.
让学生动手实践,自己去发现并学会与他人交流.
在学生解决了一个问题后,层层深入地提出了一个对学生
有更大挑战性的问题,激发学生学习探索的兴趣.
引入新知
1、在前面两节的学习中,我们知道,许多数的平方根和立方根都是无限不循环小数,它们不能化成分数.我们给无限不循环小数起个名,叫“无理数”.有理数和无理数统称为实数.
例1(1)你能尝试着找出三个无理数来吗?
(2)下列各数中,哪些是有理数?哪些是无理数?
解决问题后,可以再问同学:“用根号形式表示的数一定是无理数吗?”
2、实数的分类
(1)画一画
学生自己回忆并画出有理数的分类图.
(2)挑战自己
请学生尝试画出实数的分类图.
例2把下列各数填人相应的集合内:
整数集合{…}
负分数集合{…}
正数集合{…}
负数集合{…}
有理数集合{…}
无理数集合{…}
给出无理数定义后,请学生自己找找无理数,让学生在寻找的过程中,体会无理数的基本特征.
应该让学生自己小结得出结论:判断一个数是有理数还是
无理数,应该从它们的定义去辩别,而不能从形式上去分辩.
学生自己尝试画出实数的分类图,体会依据分类标准的不
同会有不同的分法.
探一探
我们知道,在有理数中只有符号不同的`两个数叫做互为相反数,例如3和-3,和-等,实数的相反数的意义与有理数一样。
请学生回忆在有理数中绝对值的意义.例如,|-3|=3,|0|=0,||=等等.实数绝对值的意义和有理数的绝对值的意义相同.
试一试完成课本第176页思考题.
引导学生类比地归纳出下列结论:
数a的相反数是-a
一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数;0的绝对值是0.
随着数从有理数扩充到实数,原来在有理数范围里讨论的相反数、绝对值等,自然地拓展到实数范围内。
练一练
例1求下列各数的相反数和绝对值:
2.5,0,3
例2一个数的绝对值是,求这个数。
例3求下列各式的实数x:
(1)|x|=|-|;
(2)求满足x≤4的整数x
教学中应该给学生充分发表自己想法的时间,自己体会有理数关于相反数和绝对值的意义同样适用于实数。
小结与作业
布置作业
必做:课本第178页习题10.3第1、2、3题;
选做:课本第179页习题10.3第7题
实数教案 篇7
教学目的
1、使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。
2、熟识等边三角形的性质及判定、
3、通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。
教学重点
等腰三角形的性质及其应用。
教学难点
简洁的逻辑推理。
教学过程
一、复习巩固
1、叙述等腰三角形的性质,它是怎么得到的?【SXw9.com 实习报告网】
等腰三角形的两个底角相等,也可以简称“等边对等角”。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点C重合,线段BD与CD也重合,所以∠B=∠C。
等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一”。由于AD为等腰三角形的'对称轴,所以BD= CD,AD为底边上的中线;∠BAD=∠CAD,AD为顶角平分线,∠ADB=∠ADC=90°,AD又为底边上的高,因此“三线合一”。
2、若等腰三角形的两边长为3和4,则其周长为多少?
二、新课
在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。
等边三角形具有什么性质呢?
1、请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。
2、你能否用已知的知识,通过推理得到你的猜想是正确的?
等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到∠A=∠B=C,又由∠A+∠B+∠C=180°,从而推出∠A=∠B=∠C=60°。
3、上面的条件和结论如何叙述?
等边三角形的各角都相等,并且每一个角都等于60°。
等边三角形是轴对称图形吗?如果是,有几条对称轴?
等边三角形也称为正三角形。
例1、在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数。
分析:由AB=AC,D为BC的中点,可知AB为BC底边上的中线,由“三线合一”可知AD是△ABC的顶角平分线,底边上的高,从而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。
问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样?
问题2:求∠1是否还有其它方法?
三、练习巩固
1、判断下列命题,对的打“√”,错的打“×”。
a、等腰三角形的角平分线,中线和高互相重合( )
b、有一个角是60°的等腰三角形,其它两个内角也为60°( )
2、如图(2),在△ABC中,已知AB=AC,AD为∠BAC的平分线,且∠2=25°,求∠ADB和∠B的度数。
3、P54练习1、2。
四、小结
由等腰三角形的性质可以推出等边三角形的各角相等,且都为60°。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。
五、作业:
1、课本P57第7,9题。
2、补充:如图(3),△ABC是等边三角形,BD、CE是中线,求∠CBD,∠BOE,∠BOC,∠EOD的度数。
实数教案 篇8
尊敬的各位领导、评委老师:
大家好!今天我为大家说课的内容是新人教版七年级数学(下册)第六章第三节“实数”的第一个课时。下面我就教材分析,学情分析,教法学法分析,教学媒体,课堂结构,教学过程,教学评价几个方面来对这节课进行阐述。
一、教材分析
1、教材的地位和作用
本节课是在数的开方的基础上引进无理数的概念,并将数从有理数范围扩充到实数范围。在中学阶段,大多数问题是在实数的范围内研究的,它也是进一步二次根式、一元二次方程以及函数等知识的基础。因此,让学生正确而深刻地理解实数是非常重要的。
无理数的引入,数系的扩展充满着对立和统一的辩证关系及分类思想,所以这节课不仅仅是完善学生的知识结构,而且还是培养学生想象能力,渗透数学思想,感受数美的有效载体,也是发展学生逻辑思维能力的重要内容。
2、教学重难点
根据教学大纲对这部分内容的要求及本课的特点,结合学生实际情况,我把 本节课的教学重难点确定为:
重点:了解无理数和实数的概念;
知道实数与数轴上的点具有一一对应的关系。
难点:对无理数的认识。
3、教学目标
知识与技能:了解无理数和实数的概念;
知道实数与数轴上的点具有一一对应的关系。
过程与方法:通过无理数的引入,经历数系从有理数扩展到实数的过程,培养从特殊到一般、具体到抽象的逻辑思维能力;渗透数形结合及分类的思想。
情感与态度:了解无理数的产生过程,使学生感受丰富的数学文化,体验数学来源于生活及应用于生活的意识,更好的激发学习兴趣。
二、学情分析
新的《课程标准》对学生掌握实数要求不高,但实数的知识却贯穿中学数学始终,所以我们只能逐步加深学生对实数的认识。
在学习本节课前,学生已掌握平方根、立方根同时也初步接触过等具体的无理数。无理数的概念比较抽象,特别是无理数在数轴上的表示、实数与数轴上的一一对应关系都需要一个渐进的理解过程。要让学生充分讨论与思考,归纳与总结,历经知识发展与运用。
三、教法学法分析
1.教法分析
为了更好的把握教学内容的整体性、连续性,本节课采用问题导入法引入新课,让学生回顾认识数的过程;通过类比归纳法和探究分析法经历实数的认识过程,从而较好地完成实数概念的构建和实数与数轴上的点的.一一对应关系的认识,达到教学目标。
2.学法分析
为了有效地突出重点、突破难点,本节课我采用以学生自主探究、小组合作交流相结合,把无理数和实数的概念及知道实数与数轴的点的一一对应关系确定为教学重点;无理数的认识确定为教学难点。课堂上充份调动学生的积极性,启发学生进行观察、类比、分析,让参与到概念的建立,真正的让学生进行探究,突出学生教学主体的地位。
四、 教学媒体
教学形式上充分利用电脑多媒体优化数学课堂教学,从生活实际出发,让学生亲身感受数学的奇妙,激发学生学习的兴趣。增强用数学的意识,养成及时归纳总结的良好习惯,提高课堂效率。
五、课堂结构
曾经有人说过这么一句话“人的心灵深处都有一个根深蒂固的需要,这就是希望感到自己是一个发现者,研究者,探究者。”为此在教学过程中我努力贯彻“教师为主导,学生为主体,探究为主线,思维为核心”的教学思想,我设计了以下课堂教学流程。
第一个环节:探究新知,引入课题
第二个环节:自学新知,自主探索
第三个环节:探究新知,拓展深化
第四个环节:应用新知,及时反馈
第五个环节:课堂小结,反思新知
第六个环节:布置作业,巩固新知
六、教学过程
1、探究新知,引入课题
问题1 有理数包括整数和分数,如果将下列分数写成小数的形式,你有什么发现?
师生活动:学生完成分数到小数的换算,观察小数的形式。教师逐步引导学生对小数点后数字的探究,让学生发现:任意一个分数一定都能写出有限小数或是无限循环小数的形式;进一步引导学生对整数的研究,让学生得出结论:整数可以看成小数点后是0的小数。最后总结:任何一个有理数都可以写成有限小数或是无限循环小数的形式;反过来,任何有限小数和无限循环小数也都是有理数。
设计意图:让学生从探究活动开始,体会有理数都可以写成有限小数和无限循环小数的形式。注重新旧知识的连贯性,使学生体会到学习的内容是融会贯通的,激发学生的求知欲。
2、自学新知,自主探索
问题2 你认为小数除了上述类型外,还会有什么类型?
师生活动:通过对数的归纳辨析,与有理数对照,师生共同归纳出前两节学过的一些平方根和立方根都是无限不循环小数,他们不同于有限小数和无限不循环小数,是一类不同于有理数的数,由此教师给出无理数的概念:无限不循环小数叫无理数,并指出π=3.141 592 65…也是无理数。像有理数一样,无理数也有正负之分,例如、、π是正无理数,—,—,—π是负无理数,进而给出实数的概念及实数的分类。分类如下:
设计意图:让学生回忆曾经学过的无限不循环小数是不同于有理数的数,为教师引出无理数概念作准备。
问题3 因为非零有理数和无理数都有正负之分,那么你能类比有理数的分类方法,按大小关系对实数分类吗?
师生活动:教师在逐步引导时,启发学生类比有理数的分类,明确分类的基本原则:按照某个标准,不重不漏。学生独立思考后,小组讨论得到如下分类:
设计意图:通过学生互相的讨论和交流,可以加深对无理数和实数的理解,同时让学生明确实数的分类可以有不同的方法,初步形成对实数整体性的认识。
3、探究新知,拓展深化
问题4 我们知道每个有理数都可以用数轴上的点来表示,那么无理数是否也可以用数轴上的点表示出来呢?你能在数轴上找到表示无理数的点吗?
师生活动:学生独立思考后讨论交流,借助第6.1节的得出和手中的学具进行操作(图1)
设计意图:通过具体操作,让学生知道无理数也可以在数轴上表示。
问题5 直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′对应的数是多少?
师生活动:教师参与并指导实际操作,指出无理数π可以用数轴上的点表示出来(图2)。由于学生知识水平的限制,他们不可能也没有必要将所有无理数都用数轴上的点表示出来。解决了问题4,5后,教师直接给出实数与数轴上的点是一一对应的结论。
设计意图:通过直径为1个单位长度的圆在数轴上的滚动,让学生知道无理数π也可以在数轴上表示。
4、 应用新知,及时反馈
1、下列实数中,哪些是有理数?哪些是无理数?
- , 3.14 , , 0 , π , 0.010010001…
有理数集合{ … }
无理数集合{ … }
师生活动:学生根据有关概念进行判断。
设计意图:对有关概念进行辨析。
2、 判断正误,并说明理由。
(1)无理数都是无限小数;
(2)实数包括正实数、0、负实数;
(3)不带根号的数都是有理数
(4)所以有理数都可以用数轴上的点表示,反过来,数轴上所有的点都表示 有理数。
师生活动:学生根据对有关概念进行辨析。
设计意图:对有关概念进行辨析。
5、课堂小结,反思新知
教师和学生一起回顾本节课所学内容,并请学生回答以下问题:
(1)举例说明有理数和无理数的特点是什么?
(2)实数是由哪些数组成的?
(3)实数与数轴上的点有什么关系?
(4)在本节课上,你是否应用新知时是否遇到困难?应该怎么来解决呢?
设计意图:让学生自己对本节课知识进行梳理,活跃了课堂气氛,理清了知 识脉络,强化了重点,进一步落实相关概念。
6、布置作业,巩固新知
必做题:教科书习题6.3第1,2题;选做题:教科书复习题6第6题。
设计意图:考虑到学生客观存在的差异性,在布置作业时关注不同层次的学生对本节知识的掌握情况,我布置必做题和选做题,体现分层次教学,培养了同学们发散思维的能力。
六、评价分析
本节课的设计,我根据七年级学生已有的生活知识经验,通过自主学习得到“实数”概念,在“合作交流”中加深对实数概念的理解。
在教学活动我将教学评价贯穿于本节课的每个教学环节中,如在了解是无理数之后,追问学生“是不是所有带根号的数都是无理数”,适时调整学生对无理数的片面认识,并通过练习及时检测学生对于实数的掌握。为学生提供及时适当的反馈,在轻松融洽的课堂评价氛围中完成本节课的教学和学习任务。
实数教案 篇9
学习目标
1.理解三线八角中没有公共顶点的角的位置关系,知道什么是同位角、内错角、同旁内角.毛
2.通过比较、观察、掌握同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角.
重点难点
同位角、内错角、同旁内角的特征
教学过程
一·导入
1.指出右图中所有的邻补角和对顶角?
2.图中的∠1与∠5,∠3与∠5,∠3与∠6是邻补角或对顶角吗?
若都不是,请自学课本P6内容后回答它们各是什么关系的角?
二·问题导学
1.如图⑴,将木条,与木条c钉在一起,若把它们看成三条直线则该图可说成"直线和直线与直线相交"也可以说成"两条直线,被第三条直线所截".构成了小于平角的角共有个,通常将这种图形称作为"三线八角"。其中直线,称为两被截线,直线称为截线。
2.如图⑶是"直线,被直线所截"形成的图形
(1)∠1与∠5这对角在两被截线AB,CD的`,在截线EF的,形如" "字型.具有这种关系的一对角叫同位角。
(2)∠3与∠5这对角在两被截线AB,CD的,在截线EF的,形如" "字型.具有这种关系的一对角叫内错角。
(3)∠3与∠6这对角在两被截线AB,CD的,在截线EF的,形如" "字型.具有这种关系的一对角叫同旁内角。
3.找出图⑶中所有的同位角、内错角、同旁内角
4.讨论与交流:
(1)"同位角、内错角、同旁内角"与"邻补角、对顶角"在识别方法上有什么区别?
(2)归纳总结同位角、内错角、同旁内角的特征:
同位角:"F"字型,"同旁同侧"
"三线八角"内错角:"Z"字型,"之间两侧"
同旁内角:"U"字型,"之间同侧"
三·典题训练
例1.如图⑵中∠1与∠2,∠3与∠4, ∠1与∠4分别是哪两条直线被哪一条直线所截形成的什么角?
小结将左右手的大拇指和食指各组成一个角,两食指相对成一条直线,两个大拇指反向的时候,组成内错角;
两食指相对成一条直线,两个大拇指同向的时候,组成同旁内角;
自我检测
⒈如图⑷,下列说法不正确的是( )
A、∠1与∠2是同位角B、∠2与∠3是同位角
C、∠1与∠3是同位角D、∠1与∠4不是同位角
⒉如图⑸,直线AB、CD被直线EF所截,∠A和是同位角,∠A和是内错角,∠A和是同旁内角.
⒊如图⑹,直线DE截AB, AC,构成八个角:
①指出图中所有的同位角、内错角、同旁内角.
②∠A与∠5, ∠A与∠6, ∠A与∠8,分别是哪一条直线截哪两条直线而成的什么角?
⒋如图⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .
①指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.
②试说明∠1=∠2=∠3的理由.(提示:三角形内角和是1800)
相交线与平行线练习
课型:复习课:备课人:徐新齐审核人:霍红超
一.基础知识填空
1、如图,∵AB⊥CD(已知)
∴∠BOC=90°( )
2、如图,∵∠AOC=90°(已知)
∴AB⊥CD( )
3、∵a∥b,a∥c(已知)
∴b∥c( )
4、∵a⊥b,a⊥c(已知)
∴b∥c( )
5、如图,∵∠D=∠DCF(已知)
∴_____//______( )
6、如图,∵∠D+∠BAD=180°(已知)
∴_____//______( )
(第1、2题) (第5、6题) (第7题) (第9题)
7、如图,∵ ∠2 = ∠3( )
∠1 = ∠2(已知)
∴∠1 = ∠3( )
∴CD____EF ( )
8、∵∠1+∠2 =180°,∠2+∠3=180°(已知)
∴∠1 = ∠3( )
9、∵a//b(已知)
∴∠1=∠2( )
∠2=∠3( )
∠2+∠4=180°( )
10.如图,CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.
二.基础过关题:
1、如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE 。
证明:∵∠A=∠F (已知)
∴AC∥DF ( )
∴∠D=∠ ( )
又∵∠C=∠D (已知),
∴∠1=∠C (等量代换)
∴BD∥CE( )。
2、如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B + ∠F =180°。
证明:∵∠B=∠BGD (已知)
∴AB∥CD ( )
∵∠DGF=∠F;(已知)
∴CD∥EF ( )
∵AB∥EF ( )
∴∠B + ∠F =180°( )。
3、如图,已知AB∥CD,EF交AB,CD于G、H, GM、HN分别平分∠AGF,∠EHD,试说明GM ∥HN.
实数教案 篇10
一、教材分析
1、教学内容
这节课的教学内容主要介绍无理数、实数的概念以及实数与数轴上的点一一对应的关系。
2、教材的地位和作用
本节课是人教版《数学》八年级(上)第十三章最后一个小节的内容,是在学生学习了平方根、立方根以后,接触过“2”、“π”等具体的无理数的基础上,引入了无理数的概念,从而将数从有理数扩展到实数。在中学阶段,大多数问题都是在实数的范围内研究的,因此,它对今后的数学学习有着非常重要的意义。
无理数的引入,数系的扩展充满着对立和统一的辩证关系及分类思想,实数和数轴上的点一一对应蕴含着数形结合的思想。所以这节课不仅仅是完善学生的知识结构,而且还是培养学生想象能力,渗透数学思想,感受数学美的有效载体,也是发展学生逻辑思维能力的重要内容。
二、目标分析
1、教学目标
依据《课程标准》,并结合教材内容及学生的认知水平和思维特点,确定本节课的教学目标:
知识目标:了解无理数、实数的概念和实数的分类;知道实数与数轴上的点一一对应。
能力目标:让学生感知无理数的存在,经历数系从有理数扩展到实数的过程。通过无理数的引入,培养从特殊到一般、具体到抽象的逻辑思维能力。
情感目标:渗透数形结合及分类的思想,体验数系的扩展源于实际,又服务于实际的'辩证关系;通过学生之间的相互交流,增强学生的合作意识。
2、重点、难点和关键
本节课的重点是了解无理数、实数概念和实数的分类。 由于学生有了一次从整数扩展到有理数的体验,二次根式的学习又为有理数扩展到实数作了一定的准备,学生学习实数的困难在于无理数的引入,因此难点是正确理解无理数的意义;关键是把数化为小数形式以后区分有理数与无理数的特征。
三、教法、学法
本节课通过创设问题情境,引导学生回顾认识数的过程,通过合作探索, 经历无理数的产生过程,精心设问,适时、适度采用激励性语言,提高学生积极性,从而较好地
完成实数概念的建构,达到教学目标。 并结合计算器、多媒体、实物投投仪等现代教投手段实施教学,体现直观性。 学生通过动手、动口、动脑等活动,主动探索、发现问题;互动合作,解决问题;归纳概括,形成能力。恰如其分的问题设计,真正的让学生进行探究, 突出学生教学主体的地位。
四、教学过程
1、复习旧知,揭示矛盾,引入概念
回顾书本 82页探究活动,复习前面所学的有理数的规律任何一个有理数都可以写成有限小数或无限循环小数,而发现如2和π不是有理数,但2确实是存在的,同时π也是如此。出现矛盾以后,来探索无理数的特征,学习实数。
2、概念学习
由上面有理数的规律从而得出无理数的概念,然后通过举例,先从形式上认识无理数,再归纳总结,帮助学生理解无理数的概念。教师小结:“无理数”和“有理数”仅是名称而已,据说是清朝末年从日本引进时,翻译的讹误,因此不能从词义上理解,它们根本的区别,就是凡是有理数,都可以化成两个整数之比(可看成一个分数),而无理数,无论如何也不能化成两个整数之比(不能化为分数),从而突破本课第一个难点。这样理解无理数的概念了,实数的概念和分类就容易理解。 然后练习讨论,反馈调整,巩固概念。
3、数形结合,突破难点,深化概念
前面我们从数本身的特征上探讨了数除了有理数外还有无理数,接下来我们再利用数轴来进行说明。
每个有理数都可以用数轴上的点表示,那么数轴上的每一个点都表示有理数吗?无理数是否也可以用数轴上的点来表示呢? 你能在数轴上找到表示
(思考) 老师用课件演示有在数轴上表示2和π2和π这样的无理数的点吗?这样的无理数的点,学习在数轴上用构造法表示无理数。也就是说: 数轴上的点有些表示有理数,有些表示无理数。每一个无理数都可以用数轴上的一个点来表示。所有的实数都可以用数轴上的点表示,数轴上所有的点都对应着一个实数,即实数与数轴上的点是一一对应的关系。然后练习讨论,反馈调整,巩固新知。
利用课件显示帮助理解以上内容,由此形象、直观展示实数除了有理数外还包括无理数,深化了实数的概念,数形结合,突破本课的难点。通过练习巩固实数概念,分析实数的分类,弄清带根号的数并不都是无理数,无理数指的是无限不循环小数,不能化为分数的数,这才是它的本质特征,明白数的范围扩大后相反数、绝对值的意义仍不变。
4、实数的相反数、绝对值